Observational and critical state physics descriptions of long-range flow structures
Document Type
Article
Publication Date
2-1-2020
Abstract
Using Fracture Seismic methods to map fluid-conducting fracture zones makes it important to understand fracture connectivity over distances greater 10–20 m in the Earth’s upper crust. The principles required for this understanding are developed here from the observations that (1) the spatial variations in crustal porosity are commonly associated with spatial variations in the magnitude of the natural logarithm of crustal permeability, and (2) many parameters, including permeability. have a scale-invariant power law distribution in the crust. The first observation means that crustal permeability has a lognormal distribution that can be described asκ ≈ κ exp0 (α (ϕ −ϕ 0)), where α is the ratio of the standard deviation of ln permeability from its mean to the standard deviation of porosity from its mean. The scale invariance of permeability indicates that αφο = 3 to 4 and that the natural log of permeability has a 1/k pink noise spatial distribution. Combined, these conclusions mean that channelized flow in the upper crust is expected as the distance traversed by flow increases. Locating the most permeable channels using Seismic Fracture methods, while filling in the less permeable parts of the modeled volume with the correct pink noise spatial distribution of permeability, will produce much more realistic models of subsurface flow.
Repository Citation
Malin, P. E.,
Leary, P. C.,
Cathles, L. M.,
& Barton, C. C.
(2020). Observational and critical state physics descriptions of long-range flow structures. Geosciences (Switzerland), 10.
https://corescholar.libraries.wright.edu/ees/134
DOI
10.3390/geosciences10020050