Publication Date


Document Type


Committee Members

Adam Bryant (Committee Member), Michelle Cheatham (Advisor), Mateen Rizki (Committee Member)

Degree Name

Master of Science (MS)


The Internet of Things (IoT) is a complex paradigm where billions of devices are connected to a network. These connected devices form an intelligent system of systems that share the data without human-to-computer or human-to-human interaction. These systems extract meaningful data that can transform human lives, businesses, and the world in significant ways. However, the reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the internet. The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are a few notable security breaches. To secure an IoT system, the traditional high-end security solutions are not suitable, as IoT devices are of low storage capacity and less processing power. Moreover, the IoT devices are connected for longer time periods without human intervention. This raises a need to develop smart security solutions which are light-weight, distributed and have a high longevity of service. Rather than per-device security for numerous IoT devices, it is more feasible to implement security solutions for network data. The artificial intelligence theories like Machine Learning and Deep Learning have already proven their significance when dealing with heterogeneous data of various sizes. To substantiate this, in this research, we have applied concepts of Deep Learning and Transmission Control Protocol/Internet Protocol (TCP/IP) to build a light-weight distributed security solution with high durability for IoT network security. First, we have examined the ways of improving IoT architecture and proposed a light-weight and multi-layered design for an IoT network. Second, we have analyzed the existingapplications of Machine Learning and Deep Learning to the IoT and Cyber-Security. Third, we have evaluated deep learning's Gated Recurrent Neural Networks (LSTM and GRU) on the DARPA/KDD Cup '99 intrusion detection data set for each layer in the designed architecture. Finally, from the evaluated metrics, we have proposed the best neural network design suitable for the IoT Intrusion Detection System. With an accuracy of 98.91% and False Alarm Rate of 0.76 %, this unique research outperformed the performance results of existing methods over the KDD Cup '99 dataset. For this first time in the IoT research, the concepts of Gated Recurrent Neural Networks are applied for the IoT security.

Page Count


Department or Program

Department of Computer Science and Engineering

Year Degree Awarded


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.