Document Type
Article
Publication Date
2013
City
Dayton
Abstract
Previous research found that a peripherally-located instrument landing system (ILS) embedded in a head-up display (HUD) supported equal or better control of glide-path during simulated approach and landing than the traditional centrally-located MIL-STD ILS. Here, we used a dualtask paradigm to examine whether gains in landing precision with the peripheral ILS are also accompanied by a reduction in mental workload. Participants controlled glide-path during simulated instrument landings while simultaneously performing a secondary task monitoring a head-down engine display for fault states. We varied the type of ILS (peripheral vs. MIL-STD) and assessed mental workload using the NASA-TLX and primary and secondary task performance measures: glide-path errors and engine-fault detection sensitivity, respectively. We found equivalent glide-path errors for the two displays, but the peripheral ILS produced lower subjective estimates of mental workload and significantly less dual-task decrement in engine-monitoring sensitivity, indicating that this display affords effective glide-path control with lower reduced mental demand.
Repository Citation
Spielman, Z.,
Vargas, J.,
Hammack, T.,
Bulkey, N.,
Lew, R.,
& Dyre, B. P.
(2013). Evaluation of a Peripherally-Located Instrument Landing Display Under Dual-Task Conditions. 17th International Symposium on Aviation Psychology, 442-447.
https://corescholar.libraries.wright.edu/isap_2013/41