Document Type


Publication Date



Spatial and temporal data are critical components in many applications. This is especially true in analytical applications ranging from scientific discovery to national security and criminal investigation. The analytical process often requires uncovering and analyzing complex thematic relationships between disparate people, places and events. Fundamentally new query operators based on the graph structure of Semantic Web data models, such as semantic associations, are proving useful for this purpose. However, these analysis mechanisms are primarily intended for thematic relationships. In this paper, we describe a framework built around the RDF data model for analysis of thematic, spatial and temporal relationships between named entities. We present a spatiotemporal modeling approach that uses an upper-level ontology in combination with temporal RDF graphs. A set of query operators that use graph patterns to specify a form of context are formally defined. We also describe an efficient implementation of the framework in Oracle DBMS and demonstrate the scalability of our approach with a performance study using both synthetic and real-world RDF datasets of over 25 million triples


Knoesis Center Technical Report Department of Computer Science and Engineering Wright State University Technical Report: KNOESIS-TR-2008-01