Poisson-Process Electrical Stimulation: Circuit and Axonal Responses

Document Type

Article

Publication Date

12-1995

Abstract

This work describes a simple circuit which generated a highly Poisson-like sequence of pulses. Resistor noise was amplified in three series stages followed by rectification through a relatively large shunt resistance. This yielded a sequence of variable-amplitude transients, which were inverted, amplified with DC adjustment, and fed into a Schmitt trigger/multivibrator chip for pulse generation. The pulse generation frequency was modulated by the amplification of the rectified transients. The stochastic characteristics of the output pulse train were Poisson-like over a wide frequency range, as assessed using the interevent interval distribution and expectation density as steady-state and real-time estimators, respectively. In separate tests, the output pulse train was applied to forelimb cutaneous axons of the anesthetized cat; trains of elicited propagating action potentials were recorded extracellularly from individual G1 axons in the cuneate fasciculus. The stochastic properties of the action potential train differed from those of the stimulus, with longer deadtime, lower mean rate, and an early expectation density peak. These physiological responses to circuit output were similar to those elicited by other generators of Poisson-like stimulation.

DOI

10.1016/0165-0270(95)00096-8

Find in your library

Off-Campus WSU Users


Share

COinS