Document Type
Article
Publication Date
9-5-2022
Identifier/URL
118498438 (Orcid)
Abstract
Spinal direct current stimulation (sDCS) modulates motoneuron (MN) excitability beyond the stimulation period, making it a potential neurorehabilitation therapy for amyotrophic lateral sclerosis (ALS), a MN degenerative disease in which MN excitability dysfunction plays a critical and complex role. Recent evidence confirms induced changes in MN excitability via measured MN electrophysiological properties in the SOD1 ALS mouse during and following invasive subcutaneous sDCS (ssDCS). The first aim of our pilot study was to determine the clinical potential of these excitability changes at symptom onset (P90-P105) in ALS via a novel non-invasive transcutaneous sDCS (tsDCS) treatment paradigm on un-anesthetized SOD1-G93A mice. The primary outcomes were motor function and survival. Unfortunately, skin damage avoidance limited the strength of applied stimulation intensity, likewise limiting measurable primary effects. The second aim of this study was to determine which orientation of stimulation (anodal vs cathodal, which are expected to have opposing effects) is beneficial vs harmful in ALS. Despite the lack of measured primary effects, strong trends in survival of the anodal stimulation group, combined with an analysis of survival variance and correlations among symptoms, suggest anodal stimulation is harmful at symptom onset. Therefore, cathodal stimulation may be beneficial at symptom onset if a higher stimulation intensity can be safely achieved via subcutaneously implanted electrodes or alternative methods. Importantly, the many logistical, physical, and stimulation parameters explored in developing this novel non-invasive treatment paradigm on unanesthetized mice provide insight into an appropriate and feasible methodology for future tsDCS study designs and potential clinical translation.
Repository Citation
Highlander, M. M.,
& Elbasiouny, S. M.
(2022). Non-Invasive Transcutaneous Spinal DC Stimulation as a Neurorehabilitation ALS Therapy in Awake G93A Mice: The First Step to Clinical Translation. Bioengineering, 9 (9), 441.
https://corescholar.libraries.wright.edu/ncbp/1175
DOI
10.3390/bioengineering9090441
Included in
Medical Cell Biology Commons, Medical Neurobiology Commons, Medical Physiology Commons, Neurosciences Commons, Physiological Processes Commons
Comments
This work is licensed under a Creative Commons Attribution 4.0 International License.