Light-Triggered Modulation of Cellular Electrical Activity by Ruthenium Diimine Nanoswitches
Document Type
Article
Publication Date
2-18-2013
Abstract
Ruthenium diimine complexes have previously been used to facilitate light-activated electron transfer in the study of redox metalloproteins. Excitation at 488 nm leads to a photoexcited state, in which the complex can either accept or donate an electron, respectively, in the presence of a soluble sacrificial reductant or oxidant. Here, we describe a novel application of these complexes in mediating light-induced changes in cellular electrical activity. We demonstrate that RubpyC17 ([Ru(bpy)2(bpy-C17)]2+, where bpy is 2,2′-bipyridine and bpy-C17 is 2,2′-4-heptadecyl-4′-methyl-bipyridine), readily incorporates into the plasma membrane of cells, as evidenced by membrane-confined luminescence. Excitable cells incubated in RubpyC17 and then illuminated at 488 nm in the presence of the reductant ascorbate undergo membrane depolarization leading to firing of action potentials. In contrast, the same experiment performed with the oxidant ferricyanide, instead of ascorbate, leads to hyperpolarization. These experiments suggest that illumination of membrane-associated RubpyC17 in the presence of ascorbate alters the cell membrane potential by increasing the negative charge on the outer face of the cell membrane capacitor, effectively depolarizing the cell membrane. We rule out two alternative explanations for light-induced membrane potential changes, using patch clamp experiments: (1) light-induced direct interaction of RubpyC17 with ion channels and (2) light-induced membrane perforation. We show that incorporation of RubpyC17 into the plasma membrane of neuroendocrine cells enables light-induced secretion as monitored by amperometry. While the present work is focused on ruthenium diimine complexes, the findings point more generally to broader application of other transition metal complexes to mediate light-induced biological changes.
Repository Citation
Rohan, J. G.,
Citron, R.,
Durrell, A. C.,
Cheruzel, L. E.,
Gray, H. B.,
Grubbs, R. H.,
Humayun, M.,
Engisch, K. L.,
Pikov, V.,
& Chow, R. H.
(2013). Light-Triggered Modulation of Cellular Electrical Activity by Ruthenium Diimine Nanoswitches. ACS Chemical Neuroscience, 4 (4), 585-593.
https://corescholar.libraries.wright.edu/ncbp/831
DOI
10.1021/cn300213f
Comments
Copyright © 2013 American Chemical Society.