Comparison of CO2 Trapping in Highly Heterogeneous Reservoirs with Brooks-Corey and van Genuchten Type Capillary Pressure Curves
Document Type
Article
Publication Date
10-2016
Abstract
Geological heterogeneities affect the dynamics of carbon dioxide (CO2) plumes in subsurface environments in important ways. Previously, we showed how the dynamics of CO2 plumes are influenced by the multiscaled sedimentary architecture in deep brine fluvial-type reservoirs. The results confirm that representing small-scale features and the corresponding heterogeneity in saturation functions, along with hysteresis in saturation functions, are all critical to understanding capillary trapping processes. Here, we show that when heterogeneity and hysteresis are represented, the two conventional approaches for defining saturation functions, Brooks-Corey and van Genuchten, represent fundamentally different physical systems. The Brooks-Corey approach represents heterogeneity in entry pressures, and leads to trapping by capillary pinning. The van Genuchten approach represents a network of pores transporting the nonwetting fluid, across rock types, with negligible capillary entry pressure, and leads to capillary retardation. These differences significantly affect the large-scale characteristics of CO2 plumes (i.e., their mass, shape, and position).
Repository Citation
Gershenzon, N. I.,
Ritzi, R. W.,
Dominic, D. F.,
Mehnert, E.,
& Okwen, R. T.
(2016). Comparison of CO2 Trapping in Highly Heterogeneous Reservoirs with Brooks-Corey and van Genuchten Type Capillary Pressure Curves. Advances in Water Resources, 96, 225-236.
https://corescholar.libraries.wright.edu/physics/1029
DOI
10.1016/j.advwatres.2016.07.022