Transport Properties of V1-xWxO2 Around the Metal Insulator Transition Temperature

Document Type

Article

Publication Date

1-1-2023

Identifier/URL

40964288 (Pure)

Abstract

The transport properties of W-doped thermochromic V1-xWxO2 (x=0 and 0.0074) thin films prepared by pulsed laser deposition were studied to understand the effect of doping on the electrical properties of these films. Temperature dependent magneto-transport measurements (Hall effect) in magnetic fields up to 9 Tesla were performed on thin film vanadium dioxide (VO2) across the Mott metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at MIT. The Hall mobility varies little across the MIT and remains low at ~ 0.05 cm2 /V sec. The majority carriers are electrons. Magneto-resistance is small and positive. Comparison of the three Hall parameters including carrier concentration, conductivity and mobility between various doping levels on both metallic and insulating state are reported and a model has been proposed. A correlation between carrier concentration and conductivity of VO2 films is observed but doesn’t exist between carrier concentration and mobility.

DOI

10.1117/12.2647148

Find in your library

Off-Campus WSU Users


Share

COinS