Vibrational Distributions of the N2+ A and B States with Comparison to Atlas Data of the First Negative Bands

Document Type

Presentation

Publication Date

12-2000

Find this in a Library

Catalog Record

Abstract

We have computed the density distributions of the individual vibrational levels of the N2+ X, A, and B states for a high solar activity model of the terrestrial ionosphere. We include in the model production by photoionization, electron-impact ionization, fluorescent scattering, quenching, collisional excitation, and chemical reactions. This model includes transport of the ions in individual vibrational levels, whereas our previous model (Fox and Dalgarno, 1985) was a photochemical equilibrium model. The model parameters have also been updated. The altitude range of the model has been expanded to 80 to 900 km. We compute models for different assumptions about the vibrational distributions of N2+ produced by chemical reactions. We compare our model vibrational distributions of N2+(B,v) and 3914 \AA\ intensities to those measured by Atlas~1 for a horizontal line of sight at 300 km.

Comments

Presented at the 2000 Fall Meeting of the American Geophysical Union (AGU), San Francisco, CA.

Presentation Number SA22A-15.

Catalog Record

Share

COinS