Document Type
Article
Publication Date
12-1-2020
Abstract
Aims: We previously showed that the protective effects of endothelial progenitor cells (EPCs)-released exosomes (EPC-EXs) on endothelium in diabetes. However, whether EPC-EXs are protective in diabetic ischemic stroke is unknown. Here, we investigated the effects of EPC-EXs on diabetic stroke mice and tested whether miR-126 enriched EPC-EXs (EPC-EXs miR126 ) have enhanced efficacy. Methods: The db/db mice subjected to ischemic stroke were intravenously administrated with EPC-EXs 2 hours after ischemic stroke. The infarct volume, cerebral microvascular density (MVD), cerebral blood flow (CBF), neurological function, angiogenesis and neurogenesis, and levels of cleaved caspase-3, miR-126, and VEGFR2 were measured on day 2 and 14. Results: We found that (a) injected EPC-EXs merged with brain endothelial cells, neurons, astrocytes, and microglia in the peri-infarct area; (b) EPC-EXs miR126 were more effective than EPC-EXs in decreasing infarct size and increasing CBF and MVD, and in promoting angiogenesis and neurogenesis as well as neurological functional recovery; (c) These effects were accompanied with downregulated cleaved caspase-3 on day 2 and vascular endothelial growth factor receptor 2 (VEGFR2) upregulation till day 14. Conclusion: Our results indicate that enrichment of miR126 enhanced the therapeutic efficacy of EPC-EXs on diabetic ischemic stroke by attenuating acute injury and promoting neurological function recovery.
Repository Citation
Wang, J.,
Chen, S.,
Zhang, W.,
Chen, Y.,
& Bihl, J. C.
(2020). Exosomes From miRNA-126-Modified Endothelial Progenitor Cells Alleviate Brain Injury and Promote Functional Recovery After Stroke. CNS Neuroscience & Therapeutics, 26 (12), 1255-1265.
https://corescholar.libraries.wright.edu/ptox/187
DOI
10.1111/cns.13455
Comments
This work is licensed under CC BY 4.0