Publication Date

2010

Document Type

Dissertation

Committee Members

Fred Garber (Committee Member), Arthur Goshtasby (Committee Member), Lang Hong (Advisor), Michael Temple (Committee Member), Kefu Xue (Committee Member)

Degree Name

Doctor of Philosophy (PhD)

Abstract

Current Continuous Wave (CW) Doppler radar speed measurement systems lack the ability to distinguish multiple targets. Most systems can only identify the strongest (closest) target or the fastest target.

This dissertation is related to a fusion algorithm for a VIdeo-Doppler-radAR (Vidar) traffic surveillance system. The Vidar systems uses a robust matching algorithm which iteratively matches the information from a video camera and multiple Doppler radars corresponding to the same moving vehicle, and a stochastic algorithm which fuses the matched information from the video camera and Doppler radars to derive the vehicle velocity and angle information.

We use two heterogeneous sensors of very different modalities, the first a high resolution (1024x768 pixels) video camera operating at 30 Hz with a 1/3" sony CCD fitted with a narrow field-of-view lens and the other a CW Doppler radar operating in the unlicensed Ka band (35 GHz) with a maximum detection range of 3000 ft. First, a high resolution Time-Frequency representation of the radar signal is obtained by employing the method of Time-Frequency reassignment. Then, the angle information obtained from the video camera is fused with the information from the Doppler radar to produce a velocity and angle track of the targets within the surveillance region.

Page Count

99

Department or Program

Ph.D. in Engineering

Year Degree Awarded

2010


Included in

Engineering Commons

Share

COinS