Publication Date
2010
Document Type
Dissertation
Committee Members
Fred Garber (Committee Member), Arthur Goshtasby (Committee Member), Lang Hong (Advisor), Michael Temple (Committee Member), Kefu Xue (Committee Member)
Degree Name
Doctor of Philosophy (PhD)
Abstract
Current Continuous Wave (CW) Doppler radar speed measurement systems lack the ability to distinguish multiple targets. Most systems can only identify the strongest (closest) target or the fastest target.
This dissertation is related to a fusion algorithm for a VIdeo-Doppler-radAR (Vidar) traffic surveillance system. The Vidar systems uses a robust matching algorithm which iteratively matches the information from a video camera and multiple Doppler radars corresponding to the same moving vehicle, and a stochastic algorithm which fuses the matched information from the video camera and Doppler radars to derive the vehicle velocity and angle information.
We use two heterogeneous sensors of very different modalities, the first a high resolution (1024x768 pixels) video camera operating at 30 Hz with a 1/3" sony CCD fitted with a narrow field-of-view lens and the other a CW Doppler radar operating in the unlicensed Ka band (35 GHz) with a maximum detection range of 3000 ft. First, a high resolution Time-Frequency representation of the radar signal is obtained by employing the method of Time-Frequency reassignment. Then, the angle information obtained from the video camera is fused with the information from the Doppler radar to produce a velocity and angle track of the targets within the surveillance region.
Page Count
99
Department or Program
Ph.D. in Engineering
Year Degree Awarded
2010
Copyright
Copyright 2010, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.