Publication Date

2011

Document Type

Dissertation

Committee Members

Ramana Grandhi (Advisor), Erwin Johnson (Committee Member), Raymond Kolonay (Committee Member), Donald Kunz (Committee Member), Ravi Penmetsa (Committee Member), Joseph Slater (Committee Member)

Degree Name

Doctor of Philosophy (PhD)

Abstract

Traditional uncertainty quantification techniques in simulation-based analysis and design focus upon on the quantification of parametric uncertainties-inherent natural variations of the input variables. This is done by developing a representation of the uncertainties in the parameters and then efficiently propagating this information through the modeling process to develop distributions or metrics regarding the output responses of interest. However, in problems with complex or newer modeling methodologies, the variabilities induced by the modeling process itself-known collectively as model-form and predictive uncertainty-can become a significant, if not greater source of uncertainty to the problem. As such, for efficient and accurate uncertainty measurements, it is necessary to consider the effects of these two additional forms of uncertainty along with the inherent parametric uncertainty. However, current methods utilized for parametric uncertainty quantification are not necessarily viable or applicable to quantify model-form or predictive uncertainties. Additionally, the quantification of these two additional forms of uncertainty can require the introduction of additional data into the problem-such as experimental data-which might not be available for particular designs and configurations, especially in the early design-stage. As such, methods must be developed for the efficient quantification of uncertainties from all sources, as well as from all permutations of sources to handle problems where a full array of input data is unavailable. This work develops and applies methods for the quantification of these uncertainties with specific application to the simulation-based analysis of aeroelastic structures.

Page Count

205

Department or Program

Ph.D. in Engineering

Year Degree Awarded

2011


Included in

Engineering Commons

Share

COinS