Publication Date
2011
Document Type
Thesis
Committee Members
Rachel Aga (Committee Chair), Eric Fossum (Advisor), David Grossie (Committee Chair)
Degree Name
Master of Science (MS)
Abstract
Solid oxide fuel cell (SOFC) technology has attracted great attention due to advantages such as low emissions and high efficiency. In this work, solid oxide fuel cells were fabricated by incorporating functional layers deposited by a novel aerosol jet® printing method. The buffer and cathode layers were printed from gadolinium doped ceria (Ce0.9Gd0.1)O1.95 (CGO) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) inks, respectively. The CGO layer was deposited on the sintered electrolyte and then LSCF was subsequently deposited onto the CGO layer. The polarization curves showed a 19% improvement in current density using LSCF as the cathode instead of LSM. Cathode grain size was shown to change by 85% over the sintering temperatures examined. Lastly, the effect that ethyl cellulose additive had on the resulting cathode was determined. It was discovered that the porosity of the microstructure was not correlated to the additive's molecular weight. The actual causes of the cathode porosity may be the order of polymer branching or the ethoxy content of the ethyl cellulose.
Page Count
69
Department or Program
Department of Chemistry
Year Degree Awarded
2011
Copyright
Copyright 2011, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.