Publication Date

2011

Document Type

Thesis

Committee Members

Rachel Aga (Committee Chair), Eric Fossum (Advisor), David Grossie (Committee Chair)

Degree Name

Master of Science (MS)

Abstract

Solid oxide fuel cell (SOFC) technology has attracted great attention due to advantages such as low emissions and high efficiency. In this work, solid oxide fuel cells were fabricated by incorporating functional layers deposited by a novel aerosol jet® printing method. The buffer and cathode layers were printed from gadolinium doped ceria (Ce0.9Gd0.1)O1.95 (CGO) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) inks, respectively. The CGO layer was deposited on the sintered electrolyte and then LSCF was subsequently deposited onto the CGO layer. The polarization curves showed a 19% improvement in current density using LSCF as the cathode instead of LSM. Cathode grain size was shown to change by 85% over the sintering temperatures examined. Lastly, the effect that ethyl cellulose additive had on the resulting cathode was determined. It was discovered that the porosity of the microstructure was not correlated to the additive's molecular weight. The actual causes of the cathode porosity may be the order of polymer branching or the ethoxy content of the ethyl cellulose.

Page Count

69

Department or Program

Department of Chemistry

Year Degree Awarded

2011


Included in

Chemistry Commons

Share

COinS