Publication Date
2015
Document Type
Thesis
Committee Members
Amir Farajian (Committee Member), Anthony Palazotto (Advisor), Mitch Wolff (Committee Chair)
Degree Name
Master of Science in Engineering (MSEgr)
Abstract
The ability to design vehicles capable of reaching hypersonic speeds has become a necessity to satisfy industry requirements, hence requiring the need for better understanding of creep behavior of materials. Although the steady state creep of metals has been analyzed rigorously, there is little known about transient creep of many metals. Understanding transient creep behavior of metals is crucial in analysis and design of short term hypersonic flight applications. Hence, a transient creep analysis of 304SS, Al7075-T6, Al2024-T6, Inconel 625, Inconel 718, and Rene N4 is carried out focusing on the microstructural behavior of these metals undergoing high temperature operating conditions. In doing so, the material properties that were unknown in literature were determined by parameter fitting techniques using existing steady state experimental data and also previous parametric studies determining critical parameters affecting strain values. A transient creep deformation map for each metal is produced including the required design space of the application.
Page Count
127
Department or Program
Department of Mechanical and Materials Engineering
Year Degree Awarded
2015
Copyright
Copyright 2015, some rights reserved. My ETD may be copied and distributed only for non-commercial purposes and may not be modified.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.