Publication Date

2017

Document Type

Dissertation

Committee Members

Chris Barton (Committee Member), Ernie Hauser (Committee Member), Doug Petkie (Committee Co-Chair), Amit Sharma (Committee Co-Chair), Vladimir Sotnikov (Committee Member)

Degree Name

Doctor of Philosophy (PhD)

Abstract

This research dramatically increase radiation efficiency of very low frequency (VLF) and extremely low frequency (ELF) antenna in the ionosphere by implementing a concept of a parametric antenna. The research addresses the interaction of the electromagnetic waves in the atmosphere; analyzes the radiation efficiency of different types of RF frequencies (ex: Very low Frequency (VLF) and Extremely Low Frequency (ELF)); and includes different types of antennas, such as dipole and loop antennas, in the ionosphere environment and simulating the differences to verify the parametric antenna concept. This VLF analysis can be performed many ways and this VLF frequency is widely used in space antennas by both military and civilian elements. The VLF waves in the ionosphere are used to create high levels of density irregularities in the radiation belt region and to deflect the energetic electrons and ions from the region to prevent their negative effects on satellite electronics (including the antenna). Therefore, this research addresses the problem of low radiation efficiency of satellite based antenna on conventional loop and dipole antennas used for excitation of electromagnetic VLF/ELF waves in the ionosphere. The research results will be used in the field of ionospheric plasma physics research with applications in satellite space experiments. In particular, the results will be influential in the area of active space experiments for the removal of highly energetic particles in the ionosphere which are harmful to satellite electronics, VLF/ELF communications, and for different commercial applications. This research first looks at a theoretical solution followed by modeling and simulation to prove the parametric antenna concept. Finally, experimentation was performed in the laboratory to validate and verify a theoretical solution and modeling and simulation of parametric antenna.

Page Count

119

Department or Program

Department of Earth and Environmental Sciences

Year Degree Awarded

2017

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.


Share

COinS