Publication Date

2019

Document Type

Thesis

Committee Members

Henry Chen (Advisor), Saiyu Ren (Committee Member), Raymond E. Siferd (Committee Member)

Degree Name

Master of Science in Electrical Engineering (MSEE)

Abstract

Multimedia systems play an essential part in our daily lives and have drastically improved the quality of life over time. Multimedia devices like cellphones, radios, televisions, and computers require low-area and low-power reconfigurable adders to process greedy computation algorithms for the real-time audio/video signal and image processing such as discrete cosine transform, inverse discrete cosine transform, and fast Fourier transform, etc. In this thesis, a novel 64-bit reconfigurable adder is proposed and implemented to reduce the area and power consumption. This adder can be run-time reconfigured to different reconfigurable word lengths, i.e., one 64- bit, two 32-bits, four 16-bits or eight 8-bits addition, depending on the partition signal command. A Carry Select Modified Tree (CSMT) based adder is used in the reconfigurable adder to reduce the area by 22 % and the power consumption by 47 % when compared to the conventional design. The proposed adder, implemented in 180 nm CMOS technology at 1.8-volt supply, has a worst-case Delay of 20.67 nanoseconds with an overall area of 36,417 μm² and power consumption of 447.93 μW.

Page Count

63

Department or Program

Department of Electrical Engineering

Year Degree Awarded

2019

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

ORCID ID

0000-0003-2921-8022


Share

COinS