Publication Date

2019

Document Type

Thesis

Committee Members

Amit Sheth (Advisor), Krishnaprasad Thirunarayan (Committee Member), Valerie Shalin (Committee Member), Maninder Kalra (Committee Member)

Degree Name

Master of Science (MS)

Abstract

Asthma, chronic pulmonary disease, is one of the major health issues in the United States. Given its chronic nature, the demand for continuous monitoring of patient’s adherence to the medication care plan, assessment of their environment triggers, and management of asthma control level can be challenging in traditional clinical settings and taxing on clinical professionals. A shift from a reactive to a proactive asthma care can improve health outcomes and reduce expenses. On the technology spectrum, smart conversational systems and Internet-of-Things (IoTs) are rapidly gaining popularity in the healthcare industry. By leveraging such technological prevalence, it is feasible to design a system that is capable of monitoring asthmatic patients for a prolonged period and empowering them to manage their health better. In this thesis, we describe kBot, a knowledge-driven personalized chatbot system designed to continuously track medication adherence of pediatric asthmatic patients (age 8 to 15) and monitor relevant health and environmental data. The outcome is to help asthma patients self manage their asthma progression by generating trigger alerts and educate them with various self-management strategies. kBOT takes the form of an Android application with a frontend chat interface capable of conversing both text and voice-based conversations and a backend cloud-based server application that handles data collection, processing, and dialogue management. The domain knowledge component is pieced together from the Asthma and Allergy Foundation of America, Mayoclinic, and Verywell Health as well as our clinical collaborator. Whereas, the personalization aspect is derived from the patient’s history of asthma collected from the questionnaires and day-to-day conversations. The system has been evaluated by eight asthma clinicians and eight computer science researchers for chatbot quality, technology acceptance, and system usability. kBOT achieved an overall technology acceptance score of greater than 8 on an 11-point Likert scale and a mean System Usability Score (SUS) greater than 80 from both evaluation groups.

Page Count

58

Department or Program

Department of Computer Science and Engineering

Year Degree Awarded

2019

ORCID ID

0000-0001-7666-8056


Share

COinS