Publication Date

2019

Document Type

Dissertation

Committee Members

Valerie L. Shalin (Advisor), Gary Burns (Committee Member), Joseph Houpt (Committee Member), Amit Sheth (Committee Member)

Degree Name

Doctor of Philosophy (PhD)

Abstract

This dissertation considers what it means to think differently, using naturalistic verbal evidence. This problem is inspired by a gap within the Wisdom of the Crowd (WoC) literature, but relevant to the study of language processes, mental models, and the vast emerging resource of social media data. I propose a methodological framework to characterize diversity of thought through the quantification of social media data. Four stages of research considered: a) the properties of a sample domain, b) how to identify and select diagnostic content using classification methods, c) how to quantify qualitative content in order to categorize and compare individuals, and d) how to assess the relative merits and challenges of content classification methods, including whether differences in thought actually affect outcomes. The emphasis is on pervasive issues pertinent the analysis of unstructured verbal data, rather than the specific, albeit largely successful solutions explored. Such issues were identified when defining and applying the methodological framework, and generally indicate the influence of sample domain on process measures, success at higher levels of abstraction, and a lack of continuity between all levels of analysis.

Page Count

354

Department or Program

Department of Psychology

Year Degree Awarded

2019


Share

COinS