Publication Date

2018

Document Type

Dissertation

Committee Members

Saiyu Ren (Advisor), Ray Siferd (Committee Member), Marty Emmert (Committee Member), Marian Kazimierczuk (Committee Member), Yan Zhuang (Committee Member)

Degree Name

Doctor of Philosophy (PhD)

Abstract

Microelectronic circuit is ubiquitous component of modern electrical devices. The increasing complexity and professionality of phases in microelectronic supply chain bring more global cooperation to integrated circuit (IC) production. Therefore, providing a secure environment for microelectronic circuit design does not ensure the integrity of the hardware since any participator of IC fabrication has the opportunity to implant a malicious alteration in original IC design. Especially overseas chip-fabrication is a vital potential threat for national defense products. In theory, anyone who has access to fabrication process can tamper with the original design, with the potential to change function, modify parametric properties or even have confidential information transmitted to the attacker. The surreptitious modification of an IC is denoted as Hardware Trojan (HT). To address the issue of providing robust and reliable IC products, this dissertation proposes HT detection techniques which are based on HT activation and side-channel analysis. Simulation results show that the proposed technique can detect HT with areas that are 0.013% of the host-circuitry. Combinational use of multiple detection techniques will facilitate detection probability. Also, low power-delay-product (PDP) VLSI design is considered for optimizing parametric overhead of detection circuit. Simulation results indicate that the proposed VLSI design optimization techniques can improve PDP of dynamic and static CMOS circuits by up to 61.9% and 49.9%, respectively.

Page Count

144

Department or Program

Ph.D. in Engineering

Year Degree Awarded

2018


Included in

Engineering Commons

Share

COinS