Publication Date
2020
Document Type
Thesis
Committee Members
Harok Bae, Ph.D. (Advisor); Edwin Forster, Ph.D. (Committee Member); Joy Gockel, Ph.D. (Committee Member)
Degree Name
Master of Science in Mechanical Engineering (MSME)
Abstract
This thesis work introduces a novel multi-fidelity modeling framework, which is designed to address the practical challenges encountered in Aerospace vehicle design when 1) multiple low-fidelity models exist, 2) each low-fidelity model may only be correlated with the high-fidelity model in part of the design domain, and 3) models may contain noise or uncertainty. The proposed approach approximates a high-fidelity model by consolidating multiple low-fidelity models using the localized Galerkin formulation. Also, two adaptive sampling methods are developed to efficiently construct an accurate model. The first acquisition formulation, expected effectiveness, searches for the global optimum and is useful for modeling engineering objectives. The second acquisition formulation, expected usefulness, identifies feasible design domains and is useful for constrained design exploration. The proposed methods can be applied to any engineering systems with complex and demanding simulation models.
Page Count
102
Department or Program
Department of Mechanical and Materials Engineering
Year Degree Awarded
2020
Copyright
Copyright 2020, some rights reserved. My ETD may be copied and distributed only for non-commercial purposes and may not be modified. All use must give me credit as the original author.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
ORCID ID
0000-0002-0922-804X