Publication Date
2008
Document Type
Thesis
Committee Members
David Dolson (Committee Member), William Feld (Advisor), David Grossie (Committee Member), Joseph F. Thomas, Jr. (Other), Kenneth Turnbull (Other)
Degree Name
Master of Science (MS)
Abstract
A series of 1,3-di-substituted-imidazolium lithium phthalocyanines, in which the substituents on the imidazolium nitrogens were combinations of methyl, ethyl, pentyl, hexyl, isopropyl, adamantyl or 2,4,6-trimethylphenyl groups, was synthesized. The cation exchange of a single lithium ion of dilithium phthalocyanine for a 1,3-disubstituted-imidazolium ion was performed by mixing their salts in common organic solvents under ambient conditions. This afforded a number of imidazolium lithium phthalocyanines in moderate yields. They exhibited poor solubility in most solvents. Their composition and purity were initially verified by 1H and 13C-NMR and elemental analysis. The 1H-NMR spectra also indicated that the imidazolium and lithium phthalocyanine ions are present in a 1:1 ratio. Infrared spectra confirmed the C-C and C-N stretching modes that are characteristic of phthalocyanine and imidazolium aromatic structures. UV-Vis spectra for each compound showed essentially no change in absorption from that of dilithium phthalocyanine, which suggests a lack of influence of the imidazolium ions. Thermal properties of the title compounds were determined through melting points and TGA, in which high melting temperatures (330-370°C) were seen for several complexes and lowered thermal stability was seen for all. The crystal structure of the bis(adamantyl)imidazolium derivative was determined through X-ray diffraction. It was found that water molecules are associated to imidazolium and lithium phthalocyanine ions through hydrogen-bonding, which is possibly the basis for crystallization in imidazolium-lithium-phthalocyanines.
Page Count
136
Department or Program
Department of Chemistry
Year Degree Awarded
2008
Copyright
Copyright 2008, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.