Publication Date
2021
Document Type
Dissertation
Committee Members
Nikolaos G. Bourbakis, Ph.D. (Advisor); Soon M. Chung, Ph.D. (Committee Member); Bin Wang, Ph.D. (Committee Member); Euripides G. M. Petrakis, Ph.D. (Committee Member); George A. Tsihrintzis, Ph.D. (Committee Member)
Degree Name
Doctor of Philosophy (PhD)
Abstract
The rapid increase of published research papers in recent years has escalated the need for automated ways to process and understand them. The successful recognition of the information that is contained in technical documents, depends on the understanding of the document’s individual modalities. These modalities include tables, graphics, diagrams and etc. as defined in Bourbakis’ pioneering work. However, the depth of understanding is correlated to the efficiency of detection and recognition. In this work, a novel methodology is proposed for automatic processing of and understanding of tables and graphics images in technical document. Previous attempts on tables and graphics understanding retrieve only superficial knowledge such as table contents and axis values. However, the focus on capturing the internal associations and relations between the extracted data from each figure is studied here. The proposed methodology is divided into the following steps: 1) figure detection, 2) figure recognition, 3) figure understanding, by figures we mean tables, graphics and diagrams. More specifically, we evaluate different heuristic and learning methods for classifying table and graphics images as part of the detection module. Table recognition and deep understanding includes the extraction of the knowledge that is illustrated in a table image along with the deeper associations between the table variables. The graphics recognition module follows a clustering based approach in order to recognize middle points. Middle points are 2D points where the direction of the curves changes. They delimit the straight line segments that construct the graphics curves. We use these detected middle points in order to understand various features of each line segment and the associations between them. Additionally, we convert the extracted internal tabular associations and the captured curves’ structural and functional behavior into a common and at the same time unique form of representation, which is the Stochastic Petri-net (SPN) graphs. The use of SPN graphs allow for the merging of different document modalities through the functions that describe them, without any prior knowledge about what these functions are. Finally, we achieve a higher level of document understanding through the synergistic merging of the aforementioned SPN graphs that we extract from the table and graphics modalities. We provide results from every step of the document modalities understanding methodologies and the synergistic merging as proof of concept for this research.
Page Count
242
Department or Program
Department of Computer Science and Engineering
Year Degree Awarded
2021
Copyright
Copyright 2021, all rights reserved. My ETD will be available under the "Fair Use" terms of copyright law.