Publication Date
2022
Document Type
Thesis
Committee Members
Joy Gockel, Ph.D. (Advisor); Nathan Klingbeil, Ph.D. (Committee Member); Onome Scott-Emuakpor, Ph.D. (Committee Member)
Degree Name
Master of Science in Mechanical Engineering (MSME)
Abstract
Repairing airfoil blades is necessary to extend the life of turbine engines. Directed energy deposition (DED) additive manufacturing (AM) provides the ability to add material at a specific location on an existing component. In this work, AM repairs on Ti-6Al-4V airfoil blades were analyzed to determine what effect the repair will have on the blade performance in high cycle vibration fatigue testing. Targeted sections were cut out of airfoil blades near high stress locations and repaired using DED. To understand the defects that arose with this type of repair, computed tomography imaging was used to quantify the defects from the AM process. The blades were then tested until failure using vibration bending fatigue to simulate turbine engine loading conditions. Results suggest that understanding the impact of internal and surface level defects arising from the AM process is critical towards the implementation of AM repair in aerospace components under fatigue loading.
Page Count
102
Department or Program
Department of Mechanical and Materials Engineering
Year Degree Awarded
2022
Copyright
Copyright 2022, some rights reserved. My ETD may be copied and distributed only for non-commercial purposes and may not be modified. All use must give me credit as the original author.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.