Publication Date
2009
Document Type
Thesis
Committee Members
Dean Eklund (Committee Co-chair), Chung-jen Tam (Committee Member), J. Mitch Wolff (Advisor), J. Mitch Wolff (Committee Co-chair)
Degree Name
Master of Science in Engineering (MSEgr)
Abstract
Numerical analysis was performed on a Dual-Mode Scramjet isolator-combustor. Preliminary analysis was performed to form a baseline geometry. Another study validated the results of a 2D model compared to a 3D model. Stable combustion was shown at two different flight conditions, M=3.0 and M=2.5. A marginal 5% decrease in stream thrust was shown by introducing a 50/50 mix of methane and ethylene. Based on the results of the preliminary analysis, detailed geometry analysis was performed on the 3D baseline geometry. Adding a new set of cavity feeding injectors increased the overall stream thrust and the equivalence ratio in the cavity. Using less fuel than the baseline configuration, revealed a 6.4% increase in stream thrust and an 11% increase in combustion efficiency by placing the second stage injector further upstream. Future analysis includes combining the cavity feeding with closer injector placement, which is expected to yield even better results.
Page Count
130
Department or Program
Department of Mechanical and Materials Engineering
Year Degree Awarded
2009
Copyright
Copyright 2009, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.