Publication Date

2011

Document Type

Thesis

Committee Members

Madhavi Kadakia (Advisor), Rajesh Naik (Advisor), Lawrence Prochaska (Committee Member)

Degree Name

Master of Science (MS)

Abstract

Wound healing is a complex, multi-step process that can be summarized into three stages, namely hemostasis and inflammation, proliferation, and finally tissue remodeling. Battlefield wound healing demands rapid hemostasis using clotting or cauterizing agents to immediately limit blood loss, but this occurs at the expense of proper tissue repair beyond hemostasis. Layered silicate clays such as kaolin and montmorillonite (MMT) have been previously shown to induce blood clotting due to their ability to form charged interactions with clotting factors. The charge characteristics of sodium MMT (Na-MMT) also enable functionalization with active biomolecules. Herein we first functionalize three types of alumoinosilicate clays, namely Na-MMT, kaolin, and halloysite with horseradish peroxidase (HRP) as a model system with which to study the binding and biological activity of biomolecules bound to MMT. We then functionalized Na-MMT with epidermal growth factor (EGF) via ion exchange reaction to create a nanocomposite (MMT-EGF) with EGF occupying approximately 0.12 % of the Na+ exchange sites and conduct biochemical analysis of keratinocytes after treatment with MMT-EGF. Our results demonstrate that EGF immobilized on MMT retains the ability to activate the epidermal growth factor receptor (EGRF), causing phosphorylation of the AKT and MEK1 pathways, as well as upregulation of its downstream target gene expression involved in cell growth and migration. This study also shows that like EGF, MMT-EGF treatment can stimulate cell migration in vitro, which is dependent on ERK1/2 phosphorylation.

Page Count

102

Department or Program

Department of Biochemistry and Molecular Biology

Year Degree Awarded

2011


Share

COinS