Publication Date

2011

Document Type

Thesis

Committee Members

Thomas Brown (Committee Member), David Cool (Advisor), Courtney Sulentic (Committee Member)

Degree Name

Master of Science (MS)

Abstract

Organophosphorus nerve agents are amongst the most deadly chemical compounds ever synthesized. Sarin is an organophosphate (OP) ester that irreversibly forms a phosphoester bond at the active site of acetylcholinesterase and thereby induces a rapid and lethal cholinergic crisis. It remains an active threat to vulnerable civilian populations due to its ease of synthesis and known use by rogue nations and terrorist groups. Death is the most extreme consequence of sarin toxicity. Current treatments fail to provide protection against progressive cognitive impairments years after mild exposure. Q-VD-OPh is an in-vivo caspase inhibitor with potent anti-apoptotic and anti-inflammatory properties. In this pilot study, adult male C57BL/6J mice were subcutaneously injected with 0.5 LD50 sarin followed by an intraperitoneal injection of 20 mg/kg Q-VD-OPh. Mice were sacrificed at a two-day time point followed by MALDI imaging and immunohistochemical analysis of brain sections. Protein mass spectra of tissue sections subjected to organic washes yielded an increase in signal sensitivity compared to untreated sections. A non-significant upward trend in GFAP expression was observed in sarin treated animals in contrast to Q-VD-OPh animals. Statistically significant downward trends in nuclear NF-κB/p50-50 expression were observed in sarin treated animals in contrast to Q-VD-OPh animals. These trends open a window to innovative research paradigms that extend beyond the emphasis of regenerating acetylcholinesterase and managing seizures.

Page Count

90

Department or Program

Department of Pharmacology and Toxicology

Year Degree Awarded

2011


Share

COinS