Publication Date
2013
Document Type
Thesis
Committee Members
Henry Chen (Advisor), Marian K. Kazimierczuk (Committee Member), Yan Zhuang (Committee Member)
Degree Name
Master of Science in Engineering (MSEgr)
Abstract
Two novel techniques, feedback inverter loop and pull-down bridge, adopted for multiple-input multiple-output (MIMO) dynamic CMOS circuits have been proposed in this thesis. The pull-down bridge technique optimizes the area and power of a single stage MIMO dynamic CMOS circuits, and the feedback inverter loop (FIL) technique improves the speed of multiple-stage dynamic CMOS circuits. Applying the pull-down bridge to the MIMO dynamic CMOS seven segment decoder, it is shown that common paths of different outputs are shared and optimized, which accounts for 12% speed improvement, 48% power reduction, and 73% area saving, as compared to the conventional logic design. Next, an optimized 64-bit binary comparator implemented by mixed-static-dynamic CMOS with FILs is presented. After partitioning the conventional dynamic CMOS into a mixed-static-dynamic CMOS, optimizing transistor sizes and using the FILs on the critical paths, the proposed design achieves 60% speed improvement and 42% power reduction, as compared to the conventional 64-bit dynamic CMOS comparator.
Page Count
62
Department or Program
Department of Electrical Engineering
Year Degree Awarded
2013
Copyright
Copyright 2013, some rights reserved. My ETD may be copied and distributed only for non-commercial purposes and may not be modified. All use must give me credit as the original author.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.