Publication Date

2008

Document Type

Thesis

Committee Members

Thomas Hangartner (Committee Member), S. Narayanan (Other), Daniel Repperger (Committee Member), Julie Skipper (Advisor), Joseph F. Thomas, Jr. (Other)

Degree Name

Master of Science in Engineering (MSEgr)

Abstract

Our challenge was to develop a semi-automatic target detection algorithm to aid human operators in locating potential targets within images. In contrast to currently available methods, our approach is relatively insensitive to image brightness, image contrast and object orientation. Working on overlapping image blocks, we used a sliding difference method of histogram matching. Incrementally sliding the histograms of the known object template and the image region of interest (ROI) together, the sum of absolute histogram differences was calculated. The minimum of the resultant array was stored in the corresponding spatial position of a response surface matrix. Local minima of the response surface suggest possible target locations. Because the template contrast will rarely perfectly match the contrast of the actual image contrast, which can be compromised by illumination conditions, background features, cloud cover, etc., we perform a random contrast manipulation, which we term 'wobble', on the template histogram. Our results have shown improved object detection with the combination of the sliding histogram difference and wobble.

Page Count

90

Department or Program

Department of Biomedical, Industrial & Human Factors Engineering

Year Degree Awarded

2008


Share

COinS