Publication Date
2008
Document Type
Thesis
Committee Members
Hong Huang (Committee Member), Kuldip Rattan (Committee Member), Xiaodong Zhang (Advisor)
Degree Name
Master of Science in Engineering (MSEgr)
Abstract
Effective vehicular power management requires accurate knowledge of battery state, including state-of-charge (SOC) and state-of-health (SOH). An essential functionality of automotive batteries is delivering high power in short periods to crank the engine. A well-known approach to battery SOH monitoring is to infer battery state-of-health from battery impedance or resistance, which is not robust to variation of battery types. The research and development of more reliable battery state-of-health monitoring methods to ensure vehicle start-up ability are presented in this thesis. The methods include a battery cranking voltage based method, a parity-relation based method using battery voltage and cranking current signals, and a support vector machine based pattern recognition method utilizing battery voltage and engine cranking speed. The performances of these methods have been evaluated and compared through analysis of extensive real vehicle cranking data from 2 vehicles and 20 batteries. Cost benefit analysis is also conducted with different sensor options.
Page Count
116
Department or Program
Department of Electrical Engineering
Year Degree Awarded
2008
Copyright
Copyright 2008, all rights reserved. This open access ETD is published by Wright State University and OhioLINK.