Torpedo: Improving the State-of-the-Art RDF Dataset Slicing

Document Type

Conference Proceeding

Publication Date

2017

Abstract

Over the last years, the amount of data published as Linked Data on the Web has grown enormously. In spite of the high availability of Linked Data, organizations still encounter an accessibility challenge while consuming it. This is mostly due to the large size of some of the datasets published as Linked Data. The core observation behind this work is that a subset of these datasets suffices to address the needs of most organizations. In this paper, we introduce Torpedo, an approach for efficiently selecting and extracting relevant subsets from RDF datasets. In particular, Torpedo adds optimization techniques to reduce seek operations costs as well as the support of multi-join graph patterns and SPARQL FILTERs that enable to perform a more granular data selection. We compare the performance of our approach with existing solutions on nine different queries against four datasets. Our results show that our approach is highly scalable and is up to 26% faster than the current state-of-the-art RDF dataset slicing approach.

Comments

Presented at the 11th IEEE International Conference on Semantic Computing, San Diego, CA, January 30-February 1, 2017.


Share

COinS