Document Type

Article

Publication Date

2008

Abstract

Provenance information in eScience is metadata that's critical to effectively manage the exponentially increasing volumes of scientific data from industrial-scale experiment protocols. Semantic provenance, based on domain-specific provenance ontologies, lets software applications unambiguously interpret data in the correct context. The semantic provenance framework for eScience data comprises expressive provenance information and domain-specific provenance ontologies and applies this information to data management. The authors' "two degrees of separation" approach advocates the creation of high-quality provenance information using specialized services. In contrast to workflow engines generating provenance information as a core functionality, the specialized provenance services are integrated into a scientific workflow on demand. This article describes an implementation of the semantic provenance framework for glycoproteomics.

Comments

Posted with permission from IEEE.

DOI

10.1109/MIC.2008.86


Share

COinS