A Review on Laser Processing in Electronic and MEMS Packaging
Document Type
Article
Publication Date
6-2017
Abstract
The packaging of electronic and microelectromechanical systems (MEMS) devices is an important part of the overall manufacturing process as it ensures mechanical robustness as well as required electrical/electromechanical functionalities. The packaging integration process involves the selection of packaging materials and technology, process design, fabrication, and testing. As the demand of functionalities of an electronic or MEMS device is increasing every passing year, chip size is getting larger and is occupying the majority of space within a package. This requires innovative packaging technologies so that integration can be done with less thermal/mechanical effect on the nearby components. Laser processing technologies for electronic and MEMS packaging have potential to obviate some of the difficulties associated with traditional packaging technologies and can become an attractive alternative for small-scale integration of components. As laser processing involves very fast localized and heating and cooling, the laser can be focused at micrometer scale to perform various packaging processes such as dicing, joining, and patterning at the microscale with minimal or no thermal effect on surrounding material or structure. As such, various laser processing technologies are currently being explored by researchers and also being utilized by electronic and MEMS packaging industries. This paper reviews the current and future trend of electronic and MEMS packaging and their manufacturing processes. Emphasis is given to the laser processing techniques that have the potential to revolutionize the future manufacturing of electronic and MEMS packages.
Repository Citation
Rahim, K.,
& Mian, A.
(2017). A Review on Laser Processing in Electronic and MEMS Packaging. Journal of Electronic Packaging, 139 (3), EP-16-1146.
https://corescholar.libraries.wright.edu/mme/330
DOI
10.1115/1.4036239
Comments
Invited Paper