Effects Of Laser Parameters On The Mechanical Response Of Laser Irradiated Micro-Joints
Document Type
Conference Proceeding
Publication Date
2006
Find this in a Library
Abstract
This paper is devoted to the laser irradiated joints between glass and polyimide. To facilitate bonding between them, a thin titanium film with a thickness of approximately 0.2 μm was deposited on glass wafers using the physical vapor deposition (PVD) process. Two sets of samples were fabricated where the bonds were created using diode and fiber lasers. The samples were subjected to tension using a microtester for bond strength measurements. The failure strengths of the bonds generated using fiber laser are quite consistent, while a wide variation of failure strengths are observed for the bonds generated with diode laser. Few untested samples were sectioned and the microstructures near the bond areas were studied using an optical microscope. The images revealed the presence of a sharp crack in the glass substrate near the bond generated with the diode laser. However, no such crack was observed in the samples made using fiber laser. To investigate further the reasons behind such discrepancy in bond quality, three-dimensional uncoupled finite element analysis (FEA) was conducted for both types of samples. The transient heat diffusion-based FEA model utilizes the laser power intensity distribution as a time dependent heat source to calculate the temperature distribution within the substrates as a function of time.
Repository Citation
Mian, A.,
Mahmood, T.,
Auner, G.,
& Witte, R.
(2006). Effects Of Laser Parameters On The Mechanical Response Of Laser Irradiated Micro-Joints. MRS Proceedings, 926, 90-95.
https://corescholar.libraries.wright.edu/mme/384
DOI
10.1557/PROC-0926-CC08-04
Comments
Paper presented at the 2006 MRS Spring Meeting, April 17-21, 2006, San Francisco, CA.