Document Type

Article

Publication Date

7-1-2025

Identifier/URL

42932479 (Pure)

Abstract

Blood analogs are widely employed in in vitro experiments such as particle image velocity (PIV) to secure hemodynamics, assisting pathophysiological diagnoses of neurovascular and cardiovascular diseases, as well as pre-surgical planning and intraoperative orientation. To obtain accurate physical parameters, which are critical for diagnosis and treatment, blood analogs should exhibit realistic non-Newtonian shear-thinning features. In this study, two types of blood analogs working under room temperature (293.15 K) were created to mimic the steady-state shear-thinning features of blood over a temperature range of 295 to 312 K and a shear range of 1~250 s−1 at a hematocrit of ~40%. Type I was a general-purpose analog composed of deionized (DI) water and xanthan gum (XG) powder, while Type II was specially designed for PIV tests, incorporating DI water, XG, and fluorescent microspheres. By minimizing the root mean square deviation between generated blood analogs and an established viscosity model, formulas for both blood analogs were successfully derived for the designated temperatures. The results showed that both blood analogs could replicate the shear-thinning viscosities of real blood, with the averaged relative discrepancy < 5%. Additionally, a strong linear correlation was observed between body temperature and XG concentration in both blood analogs (coefficient of determination > 0.96): for Type I, 295–312 K correlates with 140–520 ppm, and for Type II, 295–315 K correlates with 200–560 ppm. This work bridges the gap between idealized steady-state non-Newtonian viscosity models of blood and the complexities of real-world physiological conditions, offering a versatile platform for advancing particle image velocimetry tests and hemodynamics modeling, optimizing therapeutic interventions, and enhancing biomedical technologies in temperature-sensitive environments.

DOI

10.3390/bioengineering12070758


Share

COinS