Solution-Based Approaches to Fabrication of YBa2Cu3O7-delta (YBCO): Precursors of Tri-fluoroacetate (TFA) and Nanoparticle Colloids
Document Type
Conference Proceeding
Publication Date
2007
Abstract
Detailed investigation of superconducting films of YBa2Cu3O7-delta (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J(c) values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.
Repository Citation
Mukhopadhyay, S. M.,
Su, J.,
& Chintamaneni, V.
(2007). Solution-Based Approaches to Fabrication of YBa2Cu3O7-delta (YBCO): Precursors of Tri-fluoroacetate (TFA) and Nanoparticle Colloids. Journal of Electronic Materials, 36 (10), 1243-1251.
https://corescholar.libraries.wright.edu/mme/9
DOI
10.1007/s11664-007-0214-5