Electrical Characteristics of a 6H-SiC Epitaxial Layer Grown by Chemical Vapor Deposition on Porous SiC Substrate

Document Type

Article

Publication Date

2004

Abstract

Porous SiC (PSC) has been proposed as a buffer layer for reducing defects in epitaxial SiC layers. In this study, electrical characteristics of a 6H-SiC epitaxial layer grown by chemical vapor deposition on a porous SiC substrate (SiC-on-PSC) have been compared to those simultaneously grown on a standard SiC substrate (SiC-on-STD). Schottky barrier diodes (SBDs) have been fabricated on both epitaxial layers and then investigated with temperature-dependent current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The SBDs on both SiC-on-PSC and SiC-on-STD show about the same I-V and C-V characteristics, and at least four electron traps, i.e., B (0.75 eV), C (0.63 eV), D (0.40 eV), and E (0.16 eV), can be identically found in both SBDs by DLTS measurements. Thus, we conclude that the electrical quality of SiC-on-PSC is comparable to that of SiC-on-STD, and that the higher breakdown voltages observed in SBDs on SiC-on-PSC are not obviously related to a different defect structure.

DOI

10.1007/s11664-004-0202-y


Share

COinS